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 ABSTRACT

3 A large number of elastic wave problems which involve one space
variable are treated,' in a unified manner, by a'syste- of second-order
hyperbolic partial differential equations ,.'withv'thc generalized
displacements as dependent vari#ble;. This system of n equations

is analy:z>d by the wethod of characteristics, yielding closed form

equatiops for the physical characteristics, the characteristic equations.:dv :

and the propagation of discontinuities. Procedures for numerical inte-

gration along the characteristic curves are estéblished. Among the . :

elastic wave problems that may be represented by this unified approach
are the Timoshenko beam, plates, bars, and sheets, all including the ‘
lateral inertia and shear effects. Various approximate shell 'equa'tim
may also be represented. Results of numerical calculationi are in
agreement with those obtained by other methods.
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i SYMBOLS -
‘ ) 2
¢, = bar velocity = (Elo)ll
<, < dilatational (or irrotational) velocity = {(e26)/p)1/2
- S " cquivotuminal (or distortional) velocity = (G/o) 1/2
-3 ’ o f ) |‘ . ’, S T
se ' . general wave velocities ‘as defined in text L e
<, = plate velocify = (E/p (1'\'2)}1,2 '
’ { | ':- : ' |
. - shear velocity = keg T -

S

D & flexural rigidity = Eh3/12(1-v?)
E |~ Modulus of Elasticity | o
G- | Shear Modulus = E/2(l1+v)

shear correction factor

. v —

M - bending moment

N - normal stress resultant averaged across sheet “'

P l- bar stresses 7 l '

Q :-' shear stress resultant i i' e

r - radial distghcei; g : f

sl‘,- general!ized str:sses ‘g | ; ;

t ; time , | R '

1'11 ‘- generalized displacements‘ | | " y
v - Poisson's ratio ' \
P - density 3
A - Lame Constant of Elasticity = VE/(14v)(1-2v) ;?
°ij'; Bij’ aij' bi . = coefficients as defined in text o / "
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.I." INTRODUCTION.
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In the theoretical analysis of the elastic wave propagation there :

are in general three methods avaiiable; namely, the Laplace transform
net%od, the method of mode superposition, and the method of character-
istics, Due to inversion difficﬁlties the Laplace é;ansfor- method is‘.f
usu;lly limited to simple wave equations., In the.method of mode
superposition, the phasé‘velocity of different fundamental modes of
motion at different wave lengthslcaﬁ be calculated for steady wave motion,
However, it is not fuitable for.ihe st?dy of transient problems with '
prescribed initiall;nd:boundary éonditions, especially for those inputs °

in;Blving steep wave fronts, On;the other hand, from the method of

characteristics many important features, such as the wave propagation

"velocities and the equation governing the propagation of discontinuities,

can be obtained in closed form without any difficuity.
" The governing equations, either exact or approximate, for linear

wave motions can be expressed as equations of motion in terms of dis-

placement components; this will be called the displacement formplation., =

Alternatively, the governing equations can be expressed as the equations

of motion in terms of displacements and stresses, along with the stress-

displacement relations; this will be called the stress-displacement for-

mulation. In the displacement formulation the governing equations are
second order equationﬁ; while in the stress-displacement formulation
the governing equations are first order equations. Because the boundary

conditions are sometimes pregcribed in terms of stress, it has been

customary in the application of the method of characteristics to use the
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‘stress-displacement formulation, such as in References 1 to 4. It will

be shown in this paper that the displacement formulation

is much more useful. The wave vclocities, as well as the parametérs that
i

govern the propagation of discontinuities, appear explicitly in the equations

of the displacement formulation,

This paper boginj with a general mathematical study of a system of

3

n hyperbolic second-order differentialbequations with two independent AT

variables, 'The physical characteristics, as well as the characteristic

equations,.are derived. The equations governing the propagation of
discontin#ities in the first derivatives of the'dependent variables are iy
also established. A numerical procedure is thendeveloped for the calculation ;rq
of the distribution of the dependent variables behind the wave fronts for |

. problems with two distinct wave speeds, Thé procedures for numerical ‘
integration for ?roblens involvihg one displacement variable are quité well
known; e.g., recently, in [1], a numerical procedure has been applied to
the cylindrical and spherical wave problems. Leonard and Budiansky [?] ‘

- have solved the Qave propagation in a Timoshenko beam which involves two
displacemeni variables. However, they only treated the casé where the

two wave speeds are equal., Plass [3] solved the Timoshenko~beam problen. ; o
wii§ two different wave speeds; but he did not inc}ude any loading which if
excites a discontinuity along the slower of fhe two wave fronts, The !
proc?dure de&eloped in this paper, which is an improved version of that

I

given in [4], can handle discontinuities across both the first and the
second wave fronts,

| . :

. It is shown that a large number of elastic wave problems can ‘be

treated as special cases of the general mathematical problem with n

¥

govérning equations, The n dependent variables in éach of the elastic.
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'the correspondmg bar probletn incorporatim; lateral inertia by Mindlin

1

wave. problcms are generalized displacemehts"-. Among the examples with
one displa;.:cment variable are simple dilatational and irrotational waves
in cylindrical or sphor:lcal coordinates, Problems with two displacement
variables include: the '!'imoshenko beam [5], the motion of a plate incor- '
poratmg shear effect and rotary inertia by Uflyand [6] and Mindlin [7],
and Herrmann [8], and the sheet problem by Kane and Mindlin [9]. o

Numerical calculations were performed for many of the n = 2 probleins and

1
, . |
the results compared with known solutions, i
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' Examples of problems with three displacement variables (n = 3) include ,

the various theories for thin cylindrical shells, [10], [ll]‘, and [12].
For n = 4, we have the thick cylindrical sheli equations, such as those
de 'ved by Mirsky and Herrmann [13]. For n = 6, we have the prob\le- .

of wave propagation in helical Sprmgs by Nittrick [14]
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9 O ;ME'IHOD OF CHARACTERISTICS #OR A SYSTEM OF SECOND ORDER EQUATIONS
|

A.|Physical Characteristics and Characteristic Equations

Let us consider the following systen of n second order partial
dxfferentul equations for the n dependent vmables u, and two inde-

pendent variables, x and t,

lazui 1 32ui ? n J 3u : ‘
- = ¥ + 8 £ R : Q1
) axz ci atz j-l (u-_ uj ij a ) i ()
. ; - :
{
i=1,2,3 .0 4

e ! & : -

where S0 9 3 and Bij are continuous, and functions of x only. (The
Einstein summation convention will not be used in this paper.) We

shall limit our discussions to continuous functions ug, although the
derivatives of “1 may be discontinuous, For regim:s in the physical

plane (x, t-plane) where ti > first partial derivatives of u; are on-

tinuous, we -ay write

. j
.2 .

‘d(lli X) .5-; (uinx) dx ¢ T (.ui\px) de (1’ 1, 2, foo n)

jd(u ) = L, Jdx ¢ L )dt G=1,2 n)
i,t x “i,t Tt it i Lo €5 eee ) |
A 4 i
where . ! !&
~du Ju, i .
u s ot u . et : ’!
- Ti,x k33 ’ i,t t '

3

Equations (1) to (3) form a system of 3n hyperbolic 'equations which may

(2)

3

be used to ;elve for the 3n second derivatives of u., if the distribution

f

of Ui, together with their first derivatives are known along a certain curve,
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Along certain directions in the physical pi:mc, however, the specification
of us, u1 x* and “1 t produces solutions which are of indeterminate form,
These directions will be called characteristic directions, and lines
along these directions will be called the physical fcharacteristxcs. or
simply characteristics. In gé‘neral , the chéracteri#tics are curved lines
except for <he case ‘of constant c,, . where the." c.haraef'cﬁ'stics' ,
are straight lines, Across these chai'acteristics, the second derivat,ivés’
of ui may be discontinuous, -

; Solving the system of 3n equations, (l) to (3), for azu /axl , We

obtam ) ;
a“u N
1 1
— o “) .
/ w2 M .
where 2
11 o -2 0 0 o ... 0 o0 o
dx dt 0 0o o 0 0.0 0
0 dx dt 0 o 0 . eee o o 0
o o0 0 1 o0 .-1/c§ 0 " eee 0
0 0 . 0-. dx dt 0 0 “on 0
Me i
’ 0 0 0 ) 0 dx dt 0 ove 0
. L D | '
|
Y [ X X ] ! . ) - . J
f o ' S T 1762
0 ; v e | | 1 0 I/Cn
o e T ~ dx dt 0
o . 0 dx dt
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e :
. T e 7 2 '
and’ d
{
- R, 0 -1/:} 0 0 0 o 0 0
| . : .
?(u‘.x) dt 0 0 ;0 ese 0
d(ul.t) dx dt 0 ' | - ces 0
2 v
R, o o 1 0 -/ o e 0
(u ) 0 "0 dx dt 0 0 L eee 0
2% : 6
d(“ ) 0 -0 ! 0 dx dt o ' ess 0 -
z.t ' l : ’
‘ee ‘ {
- l
ose ! ‘ ; » .
' - B - 2
Rn 0 10 oee! .. 1 0 1/Cn
|
. d(un’x) 0 o.‘ eee ! J: . dx dt 0 -
du, ) 10 0 Ceee 0 dx dt
n,t g . )

Thxs second derivative is indeterminate if both M and N vanish, The
vanishing of M yields, after applying the Laplace expansion technique

for determinants, ‘ e . .
dx .
{cz-( 52} {2 - (@2 ... {2 (GD2 = 0 &)

The vanishing of each of the braces in (7) leads to two faniliis of

physical characteristics, e.g., from the first brace,' ' S ’ '}f
dx : N
T "a - i

. | )
which will be called the c’ and c' chardcteristics: Altogether, (7) '

o
t

. produces 2n fanilies of physical characteristxcs c1 and C1 ’ where

along ci and ci ’ |

<

T ; . (8)

respectively,

i
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“ , |

It is customary to call the ci's the wave velocities. 3
. |

. The vanishing of N, yields ;

{cfkl(dt)z - d(u, Jdx + d(u, )de) (2 - 2} wee (e2 - e%%azl -0 (é)

4

Assuming that <, is not equal to any other Cio Ve observe from (9) that

along the directions dx/dt = tc, o | o | f

d(u

i
= l.t) ¢ °x(d"1.x) teRdx = 0 | : (l?)

These two will be called the characteristic equations along the C: and

C; characteristics, respectively. It can be shown by a limiting process

that (10) is true even when <, is equal to one or more of the other ci's.

The solution for azui/ax 2 from eqs. (1) to (3) yields the characteristic

equations

d(y; ) ¥ cjd(; )¢ cRidx = 0, i=1,2, oo n an

| _ | |
along (dx/dt) = tci, respectively. The vanishing of the denominators g ‘
i

and numerators of the solutions of azuilaxat and azuilatz yields identical :

results as (8) and (11). Since only continubus u, are being considered,

Wwe may write
i,t !

along any direction. In regions in the physical plane where the first

. derivatives of uy aré continuous, (11) and (12), which consist of 3n

equations, may be used to solve for the 3n variables u o U, _,and u, _,
: . ; i* "i,x i,t _

if proper boundary ané initial conditions are sﬁecified. ' i

'y

|

T s

i

!
du1 - ui.xdx + u, _dt , i=1,2, een (1?)
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B. Pronagation of Discontinuities

Along the physical characteristics, the variables Uiy Uy e and
: »

u; o are governed by the characteristic equations (11)., Across the
physical characteristics, the second derivatives of u, may be discontinuous;

these discontinuities do not affect the applicability of (11), which does

" not 'contain second derivatives of u,. Discontinuities in the first

derivatives of uy may also exist across the physical characteristics,
but these will not be governed bj (11). Discontinuities in u, o and
- ' : ’ i H

u, £ occur when a finite step input (or jump input) in these variables
»

is applied at a particular x. The equations for the propagation of these

discontiﬁuities will now be derived., 3

‘ First, let us demonstrate that lines of discontinuity in the first ‘-
der{vatives of u, are necessarily characteristics, Consider a line DE
that is not a characteristic, Assume that discontinuities in the first
derivatives ‘of u, exist across DE, or between FG and DE when FG -+ DE,

as éhonn in Fig. 1. Further assume that within each of the two regions
div%ded by DE, all functions are continuous. Integration of (11), with

lowér signs, along eny C; characteristic from A to B, where A is a point

i
o2 .
on DE, yields ‘ . : v -
' i B ' B S
“1',:“‘) W 0 I L‘ cyd (u; o) .- L Rz - - 1A
e allow FG to approach DE, and B to approach A, (13) becomes
[ [1 ] ; e ae

e the bracket designates the value of discontinuity (or junp) in

the varxable it encloses, e.g.,

% [?io;Jt T “1-t(n) )} ui.t(A)' s B A

e i i
i~ |
. - !
! , B
! !

.
i

— e ol




In writing (14) we also assumed that Ri is bounded and < continuous;‘ f

therefore, the right hand side of (13) vanishes as dx épproaches zero.»

Integration along c;. as C approaches A, yields

1

["i-a "o [t c | e O9

_ Combining (14) and (15), we obtain

E'i-‘]‘ i ‘["1-’.‘] = | i

From this we conclude that discontinuities of first derivatives cannot

L 4

exist across a line that is not a characteristic.

e ——————— 8 wae i

Now, let us consider discontinuities in u, _ and u, _
i,x i,t

particufar characteristic, C;, where % is not equal to any other ci's.

across one

Write (11), with the lower signs, and integrate it along the C; i ;'f;

characteristic from A to B, as shown in Fige 2. As B approaches A,

or as C; (2) approaches C; 1), we have

B s [wad - e

Integration from C; (1) to c; (2) along the other C; characteristics

yie}ds thg same rTesults, or

] Ei.t] *c [“i,:_[ = 0  across C; s i=1,2, «ee (17_)
. ‘ . "‘ . .

' Sin%e % is not equal tb any of the other ci's, every Cz characteristic

boom
i

I : : g
passing through point A must intersect the C; (2) characteristic, where

e b

' S 1, 2, ¢ee k=1, k*1, ccc e Integration along Cz gives

|

j PL-EI - cl: uL.;J. =0 across C; , LAk U a8)

Comﬂiningj(17) and (18), and assuming that Coo Yp o» and u, , are
. » ]

coniinuous along C: (2), we obtain

E’l-t—.l i-‘ [u .g =0 scross c L=1, 2, .. _‘k-lf ke_x.l oo m ,_i(jw)

' . A - ! ] . . . : . }5

i
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- . 10
- ! ‘_
= - - * 2 + = - . : “
Thas 1nd.1c.ates. that across C,, discontinuities in Ut and U, x? j
he L{‘ k, cannot exist. Thus, discontinuities in l.lk ¢ and uk x are not '
.ot »
coupled with discontinuities in other u . and u, x* ‘therefore they can
, _ ’ ’
be itreated separately. v, , ¥
The relations governing the magnitude of the jumps ["k ] a"dE'k ] across (:k
as lthey propagate slong t:.‘t are ohtained by writing (11) twice, both with . )
the upper signs, once along C.: (2) and the other along C: (1), and e
‘subtracting one from the other.: Thus, as C: (2) approaches C; (1), we .
have | _ '
) ) n :
'. d[“k,t] - < d[xlxk.x] = -5 5h {u'_‘j [uj] * Byy [uj.;]} dx (20)
. . : i N o
Since u, are continucius throughout, Exj] = 0 , by inserting (16) into
= ' = . - B P
(20), and utilizing (19), we obtain i i )
T . dck ‘ . ' ’ : : R
Lo S 5 RELIC R N CA L @y by
Ol‘: ’ / ( : i .
; d d ’ . !
-—E..k-l.i.]. ™ -;- {Bkk dx - -—c_k- - . E
. ! 1o
. : ' i
This may be integrated to give : L i P
' -1/2 : e ‘
[uk.‘] = K oo 'Cexp I(BkkIZ) dx , along C_ (22:) |
where & is a constant, From (22) and (16), we hﬂe g§ ?
: | »
v 1/2 : * :
[uk,t] = 'Kk <, / exp I(Bkklz) dx , along Ck _ (23)
Following the same brocedure, it can be shown that the propagation along C;
of discontinuities - is governed by ; .
v \ ‘
.[“k,;] = Koo ex J(BkkIZ) dx o § ;
o : : along Ck (24)
| i

- ———- e w . . o+ =

by, d = Koo'/t em I (84 /2) o
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C. Problems with Two of the cj's Equal

If two of the ci's are equal, (22) to (24) are not applicable..

" Let us assume el equal to ¢, then C;‘l coincides with C; and

C,q Mith C; ; the equations governing the jumps E‘k,x] and [uk,t] will
be derived below, Following the same procedure as in the previous
"sec‘tion. it can be shown that (17) and the corresponding e(;u‘ations‘ for

C, are still valid in the present case, or,

. P

E;i’.t] te [ ] =0 i=1,2, ceon (25)
w}'se‘re the upper sign is for discontinui-.ties across C; and the lower

sigp for those across C; » respectively, Furthermore, analogous to.(19),
we :can show‘ thit | |

[“,t] - [u.x] =0

-~

nc;'oss C; and‘c;

In place of (20), the following equations may be written

By ¥ o dBy,J = 38 ] 2 0B e e
B ¥ 5 8B, d = 7 50,0, ;J W o @
iwhe‘re ‘ ‘ - L
' B = Bkk ’ 82 = Bk.k0l . '63 = Bk*l,k '. 8, = B.k*"l,k"l —— (29) .

Eli;minating [uk,t] and [“lwl,t] from (27) and (28)_by using the two
equations obtained from (25) with i = k and i = k+1, respectively, and
solbving the resulting two equations for [uk» x]’ we obtain |

: [

H , .
. . , o .
[} . :

L= 1, 2, coe k=1, k¢2, ,.un (26)

o o e . et i
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: 12: '|
d ] 8 :
_a? d d,,1 k_1_Cw,od (
dx2 ["k x] (8, ax (s ) ¢, dx 2 2 } dx [uk.;l !
2
o) dep . _8_2_{d L 1 95 . 8 } L }dck
¢, 4x2 2 dx “8,c. 2%252 dx 2c, 8, 28 % dx :
8 8 8,8 8.8 - P
2 d 1 273 41 _ . "
-

<This second order equation for E’k x]. nay be integrated readily if the P
. , ’ : '
. va;\res of [uk.;j and Eab’.‘] a.;t. one.point are given, since the value of
.d E"k .,3 at this point can b& obtained from (27) and {25). Once :
[u ] has been determined, Exk ] may be obtamed from (25).

D.,’ Generali zed Stresses

. ’ |
In stress wave problems, the functions u, correspond to generalized . |

displacement variables and the u, correspond to generalized velocities, '

i,t
as will be shown in a later section. In these problems, certain

st ————

generalized stress variables are also of practical importance and some
of these stress variables may be prescribed as botmdary‘conditions‘.-

The generalized stresses will be designated as S a and are defined as

!
| n L | |
A S- = b. u"‘ + L _."juj n = 1. 2. eos (31) ‘
i . j=1

. ‘ .
" In a given problem the number of generalizcl stresses Sn is either equal

Z

to, or greati.er thanf the number of generalized displacements u, 3
. 1

although the number of S. that can be prescribed as boundary conditions
is usually equal to the number of generalized diSplacenent.

When there are jumps inA un,x , the generalized stresses will also
have jumps, Consider the case of a jump in u-'x across a C; ¢or C;)

characteristic, Writing (31) twice along the two sides of this

characteristic and subtracting one from the other, we obtain |.

+ -
[5.] = b [“-,x] across C_or C_, n=1,2, «cc G2)
i ‘
~ where the conditions of [“j] = 0 are used, The variation of [S ] as it

- - -

- -

A% L. taalend funm TN £99) and (24): or fron
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therefore; two initidl conditions and two boundary conditions must be

i : 13

- T

E. “Initial and Boundary Conditions

' ﬁhe governing equations (1)- are of second order in both x and t;

!
specified for each of the variables u; . The specification of all

- mmnt—— e

u, J and u; . functions along the initial line t = 0 constitutes a
’ ’

pro%erly posed initial condition. Note that the specification of LT
. ’ [ 4

along the initial line t = 0 is equivalent to speéifying u, along
¢ 0. . .

Afbng each of the boundary iines x » x. and x = x,, one boundary

1 2°

condition for each u, must be sp:cified. One properly posed boundary

‘condition is to spécify all ui's along'x = x,_and X=X, Any of the

geperalized stress, instead of the corfesponding displacement, may also

4 !

be'specified along these lines.::For a particdlar value of i, say i = k, o

either u_ or Sk, but not both, may be specified, If the number of

k
generalized stresses is greater than n, usually on}y n of the stresses

can be prescribed as boundary conditions, the rest are not feéstle from

a practical engineering point of view, o ’ ;
‘ Properly posed initial and boundary conditions are those :rich assure
a unique solution of the equations. Uniqueness of solutions t eqs.‘(l)

will be discussed in another paper.

|

) .-k
) . '
, ; S

'

III  NUMERICAL PROCEDURES . | ; i
R i . j

Once the characteristic equations of a system of hyperbolic

differential equationé are known, they can be integrated reédily by
numerical means. For linear equations, the numerical integration is

equivalent to a straight forward solution of simultaneous algebraic

equatioﬁs and involves no iteration process, NWe shall limit our discussiohé
' !

to numerical procedures for the case of two dependent variables (n = 2) and%

constant wave velocities. ;
: y
|-

e e ————— — . ———— e
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A. Contrnuous Boundary Conditions i

In this section we shall establish the procedure for the calculation

and u, have continuous first derivatives. . The general

1 problens _

case of n = 2 and ¢, # c¢_will be considered; whereaslwith ¢, = c,, and those with
: ¢ =1

can be treated as spocial cases without any difficulty, i ‘

of regions where u

In performing the numerical calculations, the physical plane is :
fi;st divided into a network by the éhaf#cteristic lines; the character- ‘
istic gnd continuity equations are then written in finite-difference

form in terms of the values of the dependent variables at the mesh points

of the network., For problems with n = 2, there are four families of

characteristic lines in the physical plane, with each characteristic
intersecting every one of the other three characteristic families. The -
resulting ngtwork contains too many irregular mesh points to be practical
for numerical calculations. For simplicity, only C: and C: character-

* istics are used as the main network, where ¢; > c,, as shown in Fig. 3;

and only at the mesh points of this network will the dependent variables

be calculated. Values of the variables U, ux,x' ul.t, u,, uz’x, and i

u, , at a typical interior point 1 may be calculated if the corresponding _
o o
values at neighboring points 2, 3, and 4 are known from previous calculations.

4
]

To accoﬁplish this, draw C; and C; characteristics from point 1, inter- ?
!

secting the C; and C: characteristics that pass through point 4 at points

5-and 6, respectively. Values of the variables at points 5 and 6 are

obtained from those a# points 2, 3, and 4 by linear interpolation. The
|

finite-difference form of the characteristic equation (11), with i = 1

_,_.,.__-‘_______________“_4_“

and. the upper signs, is

“x,t(:n - “1.t(2)’ - gfy M- u x(2)}

2
fl (ulj(l.Z? j(l,Z) + Blj(l,Z) “j,x(l'z)} {x(1) - x(Z?}

¢ e——— =

Y -'C
: 1
' i j L

¥ o o : . e dx - { &3 3




where a single numeral in a parenthesis indicates the point at which

the variable is evaluated, a doublc numeral within a parenthesis
designates the average of the variable between the two points, Three
other finite-difference equations may be written for the characteristic
equationg:along C: between points‘lland 3, along C; between points 1
and S, and along C, between 1 and 6. These finite-differ;nce‘;hurtcterh

istic equations may be written as
- 2 : : ]

A(u, ) *c A(u, ) tc 2(u + 8, ) A(x) = 0 ;
'1.1: i( i,x i j=1 j 11 J x (34)

along %%-- 5 <5

where A( ) represents difference, and a bar ov;r a letter designates

average.

The continuxty equation for u, and u, are written in finite-difference

fbru along C and C » Tespectively, as
- u (l) -u (3) =u, (l 3) {(x(1) - x(3)} + u t(1,3) {t(1) - t(3)} (35)
u,(1) - u,(6) = uz.x(l,ﬁ) (x(1) - x(6)} + u, (1,6) {e(1) - t(6)}  (36)

The four characteristic equations together with the two continuity ‘equations,

(35) and (36), constitute six equations for the six unknowns Uye U
. . »

ux,t’ u,, uz,x’ and "2,t at point 1. : ) .-

.. For mesh points on the left boundary line x = X, iwo of the

characteristics, C: and C;, are absent, If u and u, are specified along
X = xl,ithé remaining four equations are sufficient for finding the

remaining four unknowns u and u, .. If Sl and S, are

1,x* Y1,t* Y2,x’ 2,t 22 !
specified along x = X, then the two finite-difference equations obtained
from (31) with m = 1 and m = 2, replace the finite-difference characteristic

equatxons along C and Cz' and the systenm of six equations necessary for the

detfrnination of the six variables is again’ complete. S i
‘ o
[}

iy N i e
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B. Discontinuities in the First Derivatives

;When the input at x = x, involves discontinuities (jumps) in U
»

, or S. these discontinuities propagate along the C. line, which
t 1, O 1 ’

ux'

" has an e@uation x=x, ¢t' where t' = c;t, Tho propagation of these

jumps is governed by (22), (23), and (32), with k = 1; no specizcl diffi-
culties will be encountered in the numerical integration procedure, as

discussed in [1]. However, when the input at x = x, involves jumps in

u2 ;, u e or Sz, a different situation arises, These discontinuities

propagate along the C line which has an equation x = x, + ut', where

1
um= ;2/ C, o In general, this line does not intersect the main network

at the mesh points, as shown in Fig. 4a., This line may be replaced by
- ‘ . .
a "zig-zag line™ with discontinuous slope but passing through the regular

e N

mesh?points [ﬁ]. Numerical results indicated that although the treatment i ,

by this approximate "zig-zag line" gave overall good qualitative results,

i
the Qccuracy was less than satisfactory. In this paper, the exact C’

!

l1ne, X=x ¢ ut', is v%ed, and is not replaced by ary approximate lines.
At e;ch poxnt where thxs line ;ntersects lines of the regular network
Values of the dependent variables will be calculated. Details of this
pméedure, which is sinilarA to the one used in 1§ for the plate bending
problems, will now be given below, |

‘We shall call the line x = x, ¢ ut' the jump line, and introduce

a new coordinate system (a,B8) which consists of the C’ and C' character-

e o e — T € n

istics as shown in Fig, 4a, The finite-difference network is then composed

of constant a and constant 8 lines, with constant increment & in both a

and 8, The point of intersection between the jump line and a particular

0

i -
. ,

§
-——

1
4
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a = constant line, say a = mé line, wvhere m is an integer, is at
1-u ’
8 = (I;ED né . (37)
In general, this B is not an integer; therefore the intersection is

n~t located at a regular wmesh point. In calculating the values of the

varisbles at a regular mesh pognt adjacent to. the jump line, three types

- .

" of net may be encountered. A net is defined as a square in the network o

”

, wifg each side of length §. A net is called type I if the jump line
_intersqcts both of the o = congtant lines of the net and does not
intersect the 8 = co;stant liﬁes of the net, The net ABCD in Fig. 4a,
useé for the calculation of va;ués at point B, is of type I. If the
jump line, while proceeding upwards, ihtersects a B8 = const, line first
andthen an o = const, line of a net, then this net is of type II, such
as net KLGB, If it intexsects first an o = const, line and then a
8 = const, line, then thg net is of t‘ype III, e.g., net BGIIC, The
detection as to the type of a ne} may be accomplished4as follows, For
‘a net with sides a = m§, a = (m;i)ﬁ, B = né and 8 = (n+1)5, where m and

|

n are integers, it‘is.typé Iif o

6 i & :
yYR=n+e, O0sec <1
1 . |

S ‘ o (38
;o  Y(m*l) =n+e,, 0se, <1 .
where y e (1-u)/(1+p). The net is type II, if | Y

? m -.n -1l4+ €3 s 0s €, <1 : .

b X | (39

‘v(y"l)-n¢c,..05c~<1

. . ,
© o smtg S — .
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The net is type III, if

-

0se_<1

Yﬂ'n"*:so 5

© (40)
éy(m*l);vu*lgc‘ » 0se <1

- At a mesh point on the jump line, each of the variables,
"z,x’ "z,t' assumes two values, c¢.g., uz.‘ (unjumped valuc) and
ux * [uz,x] (jumped value), etc., where E"z,x] and [“2,1:] are cgl-
culated from (22) and (23). We shall now discuss the finite-difference
solution of the governing equations’ for a tybe-l net. Referring to
Fig. 4b' for the type-1 net ABCD, it is assumed that values of the
variables. at points A, E, D, and C arc known from previous calculation,
Values at point F will now be determined. Draw line F-3, through
point F parallel to the C; family of curves; line F-2 is also drawn
throug‘h point F parallel to the C: family. The values at point 2 and 3
are obtained by linear interpolatio.n. We now apply the six equations,
(35), (36), and four of the form of (34), evaluated at proper points,
to obtain the six unknowns u

1,x° ul,t'. uz,x' uz,t’ u,, and u, at point F.

For the characteristic equation alongK-2, the jumped values

"< at point F must be used; for the equation along FC,
unjumped values at F are used; for the equation along FE at both points F

and E, the jumped values of and are uscd; for the characteristic

. Y2t
equation along F-3 as well as the two continuity equations, the unjumped

Y2 ,x

values of n2 x and u, , at poiﬁt F must be used, Having obtained the
. . »

values of the variablés at F, we may now determine those at B, Fig. 4c

_ shows the network necessary for the calculation of “z,x' “z,t' U, ul‘x,

U oo and. u, at point B which is a regular mesh point. Again the system
’ . '

of six equations is utilized, where jumped valués at point F must be used,

Values at point’sls, 6, and 2 are, again, determined by linear interpolatiron.!’

|
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For the other two types of nets, similar proccdures are adapted.,
The proper initial conditions for this casec require the specific tion

of u » and u, along t = 0, For all the cxample

1,t’ "z,t' “x,x »X

problems solved in this paper, the initial conditions are

i

u“.x(x.o) - uz_x(x.o) - ul't(x,O) - uz.t(x.O) - o

.

(41)

h

X S‘XSX
1" 2

At x = x,, properly posed boundary conditions require the

L 4 .
specification u, or S,; and, u, or S,. The same can be said for

X =X,; however, in many of the problcms where x, = = we will require,

regularity of the two variables at infinity.

The region between x = x. + ¢ .t and t = 0 in the physical plane _

1 1
contains the trivial solutions of vanishing derivatives of u, and u,.
Along the line x = x, + clt these derivatives are also zero if the

boundary condition at x = x,, t = 0, docs not include discontinuities

in the functions u 1.t* °F Sl' When discontinuities in these
L

1,x’ u

variables  occur at x = X » t = 0, they will propagate along the line

1

X =x, ¢ c,t according to (22) and (23) for k = 1,

When discontinuous functions of u R or'S2 are prescribed

2,x’? uz,t

at x = X, t = 0, these discontinuities will propagate along the line

x=x *+ct, according to (22) and (23) with k = 2, Within the region

+ c,t, the derivatives of u

between the lines x = x, ¢ czt and x = x A

1 1

are in general different from zero, although they vanish on the line

Xx=x ¢ct. '

For problems with <,

since all characteristics intersect at regular mesh points. For jump

inputs, the solution of eq. (30), instead of (22) and (23) should be used,

{ ,
!
L '

H
i

=c,, no special difficulties will be encountered
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IV = APILICATION TO_ELASTIC WAVE PROBLIMS

o .

! -
. . A large number of problems in linear elastic wave propagation and
i . N

vibrition can be aer;ged in the form of eqs. (1). From these unified
equations, the wave propagationcvelocities, C;o and the parameter Bii’
which governs the propagation of discontinuities, are immediately known.
In the following, we shall discuss some examples in elastic wave
problems in relation to the unificd cquations. For the cases of n = 2,
comparison of the results from o@r numeric;l calculation with those
obtaine; by others will also be éncluded.. No discussion will be given
on the derivation of the various“approximate wave equations; emphasis
will be placed on tAe analysis and solution o these equations.

o A summary: of somezof the problems with n = 1 and n = 2 are given
in fable I and II, respectively.: In these tables, the first row gives
the name of the physical problem; the second row gives the authors whose
notations, with minor modifications, have been adopted here; th§rrest
of the rows list the coefficients in eqs. (1) and (31) that eachof the
physical problems assumes, Certain notations, such as modulus o
elasticity E, Lame's constants A and G, shear correction
factor kz, plate modulus D, are standaidﬁzed for all cases, The radial
space variable in cylindrical or spherical coordinates is represented

by T A s :

A. Problems with One Displacement Variable (n = 1) é i

For the cylindrical and spherical dilatational waves, the governing

equations fcr homogeneous media such as eq. (10) of [}], are well' known,

¥
i
+

\ f

e e -
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Results of numerical calculations Js;%Zthod of characteristics are also
given in []]. The cylindrical rotary cquivoluminal (shear) waves in
homogeneous materials are treated by Goodier and Jahsman fi6]. The
corresponding problem for nonhomogencous media are solved by Sternberg
and O\akrsvorty ﬁﬂ by the Laplace transform method; and by Chou and
‘Schaller E@] by the method of characteristics. Solutions of the
cylipdrical longitudinal equiﬁoluminal waves may be found in ﬁkﬂ. In

" Table I, the corresponding equations for all these cases with variable

s e e

R e R SISO RIN SOOI

spat1a1 distribution of elastic properties (nonhomogeneous) are presented.,

B. Problems with Two Displacement Variables (n = 2)

. : Only two'géneralized stresses, S1 and Sz, are listed for each case
in Table II, These are the two that may be prescribed as boundary
condit{ons. Additional generalized stresses, such as We in the plate
problem, usually (except the beam case) appear in the stress equations
of motion; however, they may not be prescribed as boundary conditions

and they are not needed for the solution of the problem in terms of

geéeralized displacements,
i After the elimination of one dxspiaceﬁent variable, the two equations!
og motion of any of the n = 2 problems may be expressed as one fourth
order equation, However, from this single fourth order equation the

wave velocities and the factors Bll'and 822 cannot be detected readily. -
l In all the numerical calculations, 150 space points are used; which

réquired an average.computing time of 20 to 30 minutes on an IBM 7040

e mputef. ' : , ) .

s o e

|
|
!
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Timoshenko Beams

The governing equations, thc wave velocities, and the equation

governing-ihe discontinuities for beams with variable cross-sectional
area and variable elastic prop;rties are in agreement with those
obtained by Leonard and Budiansky [2]. 1In [2], they also solved the

- beam problem with two wave speeds cqual by both the method of character-

istics and the method of Laplace transform. In particular, they

obtained closed form solutions for infinite beams with either step

velocif} or step moment input applied at the end., The case of a uniform

cantilever beam subjected to a step velocity at the root was calculated

by the present technique; the relative difference between our numerical
i

results and eq. (C14) of [2] is less than 0.05%.

' Boley and Chao 0] nresented the Laplace transformation solutions

to four types of loadings applxed to a semi-infinite beam, These
loadxngs applied at x = 0 are: ’ 7 ’ ‘ e
a. Step velocity and zero bending moment,

{ b, Step moment and zero displacement,

C. -Step angular velocity and zero shear force, and

H
. d. Step shear force and zero rotation.

These problems were solved by the present technique; our numerical results

werl found to be in good agrcement with the curves of [Zélex;ept in case

(b)f where a slight discrepancy in moment exists, as shown in Fig. 5.
!

‘ Plass [13] presented solutions to eleven types of loadings applied'

to a semi-infinite beam, by uéing a numerical procédure similar to the
‘ . -

present one, lle applied various types of support conditions and impact

conditions where in every case the impact is a pulse in the form of a

'

s . ——— b + S 4 o s o o
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‘
half-sine wave, The problems presented in Figs. 1, 4, 6, 10, 11, 12,
~ ”

and 13 of -[3] were solved by the present technique., The solutions were

. found to be in good agreement with those of [3] éxcept in one case,

For the case of half-sine rotation impact with zero shear, our resulting

1 1]
moment distributions are one-fourth in magnitude of those presented in

Fig, 13 of [3].

Plates
'~ The equations in Table II for plane and cylindrical waves in plates
are based on the two-dimensional equations derived by Mindlin [7]. Chou

and Koenig [?] calculated cylinérical waves due to various axisymmetrical

‘loadings of a plate with a circular hole, The numerical results in (4]

are satisfactory except for the case with a jump shear force input at

the hole; in which case the proéedure for the calculation of jumps across

the second characteristic is not accurate, Improved results for plates

fusing the present technique are given in [}i]. A;few curves showing the

]
response of a plate due to jump shear input are reproduced in Fig. 6.

for easy reference,

Bars

. The equations for nonhomogeneous bars are based on the work by Mindlin

and Herrmann [6]. Miklowitz [21] presented the Laplace transform solution

¥

to the problem of a semi-infinite bar with step axial stress and zero

velocity applied at x = 0, His solution was also successfully duplicated

by the present techniﬁue.

&

Sheets"

Equations governing the propagation of dilatational waves in a plate

v 4 o b A, paon s <

R
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incorporating the lateral inertia effcct were derived By Kane and Mindlin
[9] for two-dimensional problems. The corresponding caquations for cylindri-
cal waves were preseﬁted by Jahsman @3. In Table il, corresponding equations

: i
for plane and cylindrical wavesin nonhomogencous material are given. 1

‘ . i
C. Problems with More Than Two Displacemcnt Variables (n > 2)

Severalcgets of approximate equations, all incorporating the rotary
inertia and shear effect, for thin cylindrical shells can all be arranged
into thg forn of eqs. (1), with n = 3. For instance, the equations derived_
by Herrmann and Mirsky Y reducc to our unified form, if, in [1], the
first of (18) is multiplied by 1/R and combinea with the third multiplied
by minus one, the resulting cquation contains second derivatives of u only;
the first of (18) minus the third multiplicd by (-h2/12R) gives the
correspogﬁing equation for &x;'while the second of (18) is already in the
form of our (1). The three wave velocities detected from these equafions,
and the:equations governing the propagation of discontinuities are in
agreeﬁént with those obtained by Spillers]?ﬂ, who used the corresponding
set of first order equations, Detailed discussion of the approximations
involved in different shell theories, in terms of the present unified
approach, as well as numerical calculaiions,'will be given in a forth-
coming paper. .

One example.for the n = 4 case is the thick cylindrical shell
equations derived by Mirsky and llerrmann [3. Here, if the first two
equations of (22) in ﬂi] arc multiplied by proper constants and combined,
two equations, one containing sccond derivatives in *x only, the other
containing second derivatives in u only, may be obtained. Similarly, -

the last two equations of (22) in [13] may be combined to give two equations

~each with second derivatives of one variable only,

H P
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Another interesting problem that may be reprcsented by the present
fied approach is the wave provaration in helical sprines [14]. 1In

s casc there are six rencralized displacement variables (n = 6),

ec components of displacement and thrcc components of rotation of

cross;sectinn of the spring. The thecory is essentially an extension ’
In [14], wittrick obtained i
stress-displacement relations, (49) and (50), and six equations of %
|
ion in terms of stresses and displacements, (51) and (52). Substitutiné

eqs. (49) and (50) into his (51) and (52), we obtain six equations

of;the form of our eqs. (1). It is interesting to note that for these

—————

(W

«

¢’

equations there are only three distinct wave velocities for the cases

re the cross-section of the spring is either square or circular,
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